
Have You Seen That Number? Investigating Extrapolation in Question Answering Models

Jeonghwan Kim, Giwon Hong, Kyung-min Kim, Junmo Kang, Sung-Hyon Myaeng

Overview

Machine reading comprehension (MRC) models in DROP unable to do numerical extrapolation in textual reasoning.

Proposing a novel E-digit surface form to alleviate extrapolation issue in MRC models.

Change in the number range causes significant performance drop.

Related Work

Extrapolation addressed in Arithmetic Word Problems (AWP) setting (Trask et al., 2018; Kim et al., 2021).

"What is 24 + 5?"

 Digit-position information to improve arithmetic reasoning capability of Transformer models (Noqueira et al., 2021).

Probing Models for Extrapolation Capability

- 1. Stanza NER to extract: QUANTITY, CARDINAL, MONEY type numbers
- 2. Data Perturbation ADD(10), ADD(100), FACTOR(10), FACTOR(100)

"How many people, households, and families reside in the county according to the 2000 census?"

As of the census of **2000**, there were **49,927** people, 18,009 households, and 12,192 families residing in the county. The population density was **48** people per square mile (19/km²).

Answer: 80,128

FACTOR(100)

As of the census of **2000**, there were **4,992,700** people, 1,800,900 households, and 1,219,200 families residing in the county. The population density was 4,800 people per square mile (19/km²).

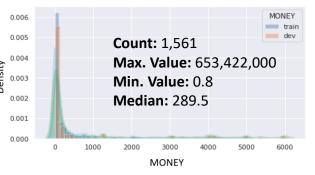
Answer: 8,012,800

Perturbated DROP data evaluated on models on the DROP leaderboard led to performance drop:

> **NAQANet** \rightarrow -23.17 in Exact Match (EM) **NumNet** \rightarrow -37.37 in EM NumNet+ (RoBERTa) \rightarrow -26.03 in EM **GenBERT** \rightarrow -26.02 in EM

(for FACTOR(100) perturbation)

Reasons behind performance degradation


1. Sub-word Representation

Different tokenization for similar numbers

21260 → '212', '##60' 21262 → '212', '##6', '##2'

2. Limited Number Distribution

Number occurrence is cluttered and sparse

Leads to lack of Inductive Bias for numbers

Method

househo \$ 53,55 2	015 estimates place the median di di income for Cooke County at z, past estimates showed the nousehold income"
10e-based	2 10e3 0 10e2 1 10e1 5 10e0 5 10e4 3 10e3 5 10e2 5 10e1 2 10e0
10-based	2 1000 0 100 1 10 5 1 5 10000 3 1000 5 100 5 10 2 1
Digit	2015 53552

- Digit-position information is important (Noqueira et al., 2021).
- E-digit decouples the digit-position from positiondependent embeddings

Result

Model – GenBERT (Geva et al., 2020) Dataset – Perturbated DROP – FACTOR(100)

Model	DROP – FACTOR(100)		
	EM	FI	
Original	42.78	45.10	
De-based	43.02	49.94	
0based	49.24	56.47	
Digit	44.97	51.76	
E-digit	57.91	63.98	

Takeaways

- Proposing an evaluation benchmark for more challenging, but necessary number reasoning.
- A simple yet readily applicable E-digit method.
- Further investigation on unidentified issues causing the extrapolation issue