Have You Seen That Number?

Overview

Machine reading comprehension (MRC) models in DROP unable
to do numerical extrapolation in textual reasoning.

Proposing a novel E-digit surface form to alleviate extrapolation
issue in MRC models.

"Kasay hitting
a 45-yard field
goal ... with
Kasay again
hitting a 49-
yard field
goal..."

Motivation

"Kasay hitting
a 4500-yard
field goal ...

with Kasay

Change in the number range causes significant performance drop.

Related Work

- Extrapolation addressed in Arithmetic Word Problems (AWP) setting (Trask et al., 2018 ; Kim et al., 2021)

"What is $24+5$?"

- Digit-position information to improve arithmetic reasoning capability of Transformer models (Nogueira et al., 2021).

Probing Models for

 Extrapolation Capability1. Stanza NER to extract:

QUANTITY, CARDINAL, MONEY type numbers
2. Data Perturbation

ADD(10), ADD(100), FACTOR(10), FACTOR(100)

Perturbated DROP data evaluated on models on the DROP leaderboard led to performance drop:

NAQANet \rightarrow - 23.17 in Exact Match (EM) NumNet \rightarrow-37.37 in EM
NumNet+ (RoBERTa) $\rightarrow-26.03$ in EM GenBERT \rightarrow-26.02 in EM
(for FACTOR(100) perturbation)

Reasons behind performance degradation

1. Sub-word Representation

Different tokenization for similar numbers

$$
\begin{aligned}
& 21260 \rightarrow \text { '212', '\#\#60' } \\
& 21262 \rightarrow \text { '212', '\#\#6', '\#\#2' }
\end{aligned}
$$

2. Limited Number Distribution

Number occurrence is cluttered and sparse

Digit-position information is important (Nogueira et al., 2021).
E-digit decouples the digit-position from positiondependent embeddings

Result		
Model - GenBERT (Geva et al., 2020) Dataset - Perturbated DROP - FACTOR(100)		
Model	DROP - FACTOR(100)	
Original	EM	FI
IOe-based	42.78	45.10
IObased	49.02	49.94
Digit	44.97	56.47
E-digit	57.9 I	51.76
	Takeaways	

Proposing an evaluation benchmark for more challenging, but necessary number reasoning.

A simple yet readily applicable E-digit method.
Further investigation on unidentified issues causing the extrapolation issue

