Exploiting Numerical-Contextual Knowledge to Improve Numerical Reasoning in Question Answering

Jeonghwan Kim, Junmo Kang, Kyung-min Kim, Giwon Hong, Sung-Hyon Myaeng

The North American Chapter of the Association for Computational Linguistics (NAACL), 2022

IR&NLP Lab

In the first example, the model interprets **90s** and **80s** as **YEAR type** numbers, instead of the contextually correct AGE type

Thus, **identifying the correct number types are essential** to derive the correct answer in a numerical reasoning over text setting

Overview

Pre-trained language models (PLM) exhibit a general tendency to **overly rely on parametric knowledge** (i.e., knowledge acquired and stored in the parameters)

This phenomenon can also be evidenced in question answering (QA) tasks like **numerical reasoning over text**^[1]

We propose a simple yet effective **regularized attention masking scheme** to alleviate the over-reliance issue and exploit the much-relevant contextual knowledge

Preliminary Study

Q) What kind of parametric knowledge reside within these PLM embeddings?

Mostly pre-existing **DATE & TIME related knowledge** acquired from the pre-training and finetuning steps

Such parametric knowledge influence how the numbers are treated and interpreted within the given context

Entity-Number Channel

 $\alpha = softmax \Big(\mathbf{A}_{\mathbf{E}} \odot \frac{QK}{\sqrt{2}} \Big)$

Gathers number-related entity information

Question: "How many employees work at Johnny's?"

Passage: "... There are around 73 employees working at Johnny's ...

Type-Number Channel

 $\beta = softmax \left(A_T \odot \frac{QK^T}{\sqrt{d_T}} \right) V$

Gathers number-related surrounding token information that **defines the number type**

Question: "How many employees work at Johnny's?"

Passage: "... There are around 73 employees working at Johnny's ...

Decoder-Number Channel

Reduces number-irrelevant context info.

NC-Mask alone is not enough; the masking scheme overwrites the pre-existing numeracy (i.e., magnitude) information \rightarrow Numeracy Dilution Issue

Adopting DICE Regularization to Retain Numeracy

DICE^[2] regularization preserves the numeracy information within the number embeddings

$$L_{DICE} = \left\| 2 \frac{|x - y|}{|x| + |y|} - d_{cos}(\boldsymbol{v}_{x}, \boldsymbol{v}_{y}) \right\|$$

 $L = L_{span} + L_{decoder} + L_{DICE}$

Experiments & Results

Model	Number	Date	All
	F1	F1	F1
GenBERT	75.21	56.37	72.30
+ Entity-Num	76.24	56.33	72.61
+ Type-Num	75.30	56.59	72.31
+ Decoder-Num	75.37	55.98	72.34
NC-Mask	76.89	56.32	72.65
NC-Mask + DICE	77.72	56.31	73.59
GenBERT + DICE	76.12	55.98	72.38

Entity-Num & Type-Num channel improves both the Number and Date-type question accuracy \rightarrow **Channels are complementary**

Approach

An attention masked QA model that leverages relevant context information flow to interpret numbers in text

→ NC-BERT (Numerical-Contexutal BERT)

NC-BERT consists of:

- 1. Attention mask (NC-Mask)
- 2. A regularizer to retain numeracy within the number embeddings.

NC-Mask

The Attention Masking for Number-related Context

DICE-reg. alone does not improve numerical reasoning much \rightarrow NC-Mask & DICE reg. are interdependent to one another

P) The total number of active military	NC-BERT	
personnel in the Croatian Armed Forces stands at 14,506 and 6,000	14,506 + 6,000 = 20,506	
reserves working in various service branches of the armed forces. In May	Original	
2016, Armed Forces had	14,506 + ? = 14,506	

Q) How many active military personnel and reserve are in the Croatian Armed Forces?

References

Talmor et al., 2020; oLMpics – On What Language Model Pre-training Captures, TACL 2020
Sundararaman et al., 2020; Methods for Numeracy-Preserving Word Embeddings, EMNLP 2020