Graph-Induced Transformers for Efficient

Multi-Hop Question Answering he 202 e i oon

LE] Empirical Methods in Natural
IR&NLP Lab. Giwon Hong, Jeonghwan Kim, Junmo Kang, Sung-Hyon Myaeng Language Processing (EMNLP 2022)

Motivation * Unlike pre-trained LMs, these graph modules
usually have to be retrained from scratch.

Question Paragraph A * This results in sample inefficiency, i.e., numerous
L S

The Schumann-Runge ¢ The Schumann-Runge bands samples required for the necessary inductive bias.
bands are named for at are a set of absorption bands of
least one German what? ... 176 and 192.6 nanometres. Graph Module

The bands are named for Victor

Schumann and Carl Runge. n,

’ Language Model
Paragraph B emmmmmmm e = guag -+ B
’

Carl David Tolmé Runge (30 August 1856 — 3 January 1927) n

was a German mathematician, physicist, and spectroscopist.

* In Multi-Hop Question Answering like HotpotQAY], Graph-Induced Transformer (GIT)
connectivity between texts should be exploited.
* Previous works place a graph module on top of a layer i + 1
language model to utilize connectivity (SAE[?))
nm n; n3
Graph Module - layer i
PR .
YAl
.) 1t 1 * Graph-Induced Transformers (GIT) embeds text
hs inside Transformers.
Language Model grap
guag * Models the text and its structure without additional

| | | graph modules = Sample efficiency.
Question | Paragraph A | Paragraph B

Approach

héad N"P

$ E
- . . P
layer i +1 . 4
head 1 2 Attention heads
for each edge type
layer i
Nodes in GIT GIT Layers
+ Nodes in text graphs could be * GIT is selectively applied only to some Transformer layers.
paragraphs, sentences, or entities. 1. To simulate the number of propagation of graph modules
« GIT represents each node as a set 2. To model the text features in lower layers without hindrance.
of tokens in the Transformer (Transformer Layers]
=
[x3
Carl Runge Carl Runge
Edges in GIT # GNN layer = 3 (Transformer Layers)
* GIT represents edges as fully Heterogeneous Edge Types in GIT
connected attentions between * For each edge type, GIT assigns a different attention head
node sets

Attention heads
for each edge type

- -

Experimental Results J

)

/ SAE Joint EM Joint F1 \ (o Joint EM JointF1)
Layer 1-24 42.75 70.70
Graph 43.55 7145 Laier 1-3 4247 7072
w/0 Graph 4239 70.66 Layer 8-10 4307 7121
GIT 43.59 71.31 Layer 15-17 43.04 70.76
Graph + GIT ~ 43.38 71.12 Layer 22-24 43.36 71.01
Layer 21-23 43.59 71.31
* GIT succeeds in making up for the performance
drop when Graph was removed (w/o Graph). GIT Additional Layers
+ Graph + GIT did not improve performance further. Layer 25-27 (No GIT) ~ 43.13 71.07
=> Graph and GIT contain same information j Layer 25-27 44.09 71.64
[Data Portion SAE GIT \ * Applying GIT to the low-middle layers of the
Transformer adversely affects the performance
1% 9.57 15.68 (1 63.8%) * Layer addition improves the performance, but
2% 17.79 24.88 (1T 39.8%) could lead to decreased sample efficiency
5% 28.05 29.68 (1 5.8%) _ * Better not to perturb the task-specific last layer)

10% 3141 33.02(15.1%)

50% 40.61 41.67 (1 2.6%) Acknowledgement

This work was supported by Institute for Information & communications Technology

* Since the SAE model has to learn the Graph module Planning & Evaluation(IITP)

from scratch, its performance drops significantly in

data-poor environments. [1] Yang et al., 2018; HotpotQA: A dataset for diverse, explainable multi-hop question
e GIT utilizes pretrained LM as it is, resulting in sample answering, EMNLP 2018

ff . [2] Tu et al., 2020; Select, Answer and Explain: Interpretable Multi-hop Reading
\ erriciency. / Comprehension over Multiple Documents, AAAI 2020

