

Joint EM Joint E1

SAE	Joint EM	Joint FI	
Graph	43.55	71.45	
w/o Graph	42.39	70.66	
GIT	43.59	71.31	
Graph + GIT	43.38	71.12	

- GIT succeeds in making up for the performance drop when Graph was removed (w/o Graph).
- Graph + GIT did not improve performance further.

Graph and GIT contain same information

_	Data Portion	SAE	GIT	
-	1%	9.57	15.68 († 63.8%)	
	2%	17.79	24.88 († 39.8%)	
	5%	28.05	29.68 († 5.8%)	
	10%	31.41	33.02 († 5.1%)	
	50%	40.61	41.67 († 2.6%)	

- Since the SAE model has to learn the Graph module from scratch, its performance drops significantly in data-poor environments.
- GIT utilizes pretrained LM as it is, resulting in sample efficiency.

011	JOHIT LIVI	Joint 14		
Layer 1-24	42.75	70.70		
Layer 1-3	42.47	70.72		
Layer 8-10	43.07	71.21		
Layer 15-17	43.04	70.76		
Layer 22-24	43.36	71.01		
Layer 21-23	43.59	71.31		
GIT Additional Layers				
Layer 25-27 (No GIT)	43.13	71.07		
Layer 25-27	44.09	71.64		

- Applying GIT to the low-middle layers of the Transformer adversely affects the performance
- Layer addition improves the performance, but could lead to decreased sample efficiency
- Better not to perturb the task-specific last layer

Acknowledgement

This work was supported by Institute for Information & communications Technology Planning & Evaluation(IITP)

References

[1] Yang et al., 2018; HotpotQA: A dataset for diverse, explainable multi-hop question answering, EMNLP 2018

[2] Tu et al., 2020; Select, Answer and Explain: Interpretable Multi-hop Reading Comprehension over Multiple Documents, AAAI 2020